
Using Mochi to Build Data Services

Philip Carns (Argonne National Laboratory)

Matthieu Dorier (Argonne National Laboratory)

Rob Ross (Argonne National Laboratory)

Jerome Soumagne (The HDF Group)

April 13, 2021

2

What’s changing in HPC data services?

Image from M. Geurden, “Market Opportunity Identification: Push or Pull?,”July 2012,

https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/

Application pull:

• Use of HPC in experimental

science (e.g., ATLAS/CMS)

• Artificial intelligence use cases

• Streaming data

Technology push:

• More capable storage technologies

• Compute in storage

• New networking APIs and

capabilities

https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/

3

Mochi
Customized data services for DOE science

Mochi provides a toolkit for building high-
performance data services for use on HPC platforms,
and ECP computer scientists are using Mochi to
build services for ECP application teams.

Mochi is a multi-institution project including Argonne
National Laboratory, Carnegie Mellon University, the
HDF Group, and Los Alamos National Laboratory.

Who uses Mochi?

– End users benefit from the specialization of these
services in terms of ease of use and performance.

– Computer scientists use Mochi to develop
customized data services.

14

Mochi components and microservices

What’s new in the Mochi approach?
An ecosystem of services co-existing and reusing functionality

Particle

Simulation

(e.g. VPIC)

C code

Machine Learning

Ensemble

(e.g. CANDLE)

Python code

Analysis of

Experimental Data

(e.g. art Framework)

C++ code

small writes &
indexed queries

caching large,
write-once objects

bulk ingest &
iterative access

DeltaFS FlameStore HEPnOS

Mochi has been used to develop a
number of services, including ones to
store and index particle data, to manage
learning data, and to provide fast access
to high-energy physics detector data
during analysis.

Within ECP, Mochi is also helping enable
Unify, Chimbuko, DataSpaces, and
Proactive Data Containers.

4

What’s new in the Mochi approach?

Object API

Client
Memory

Object Provider

Application Process

Object Client

Object provider node

Application node

PMDK or
POSIX

Extent

Provider

Bake

Client

DB (e.g.,

LevelDB)

KV Client

KV Provider

KV Provider

Margo

Mercury Argobots
LevelDB

Berkeley

DB

3. Multiple methods of

programming (C, C++, Python),

more accessible.

4. Portable RPC communication

library designed for multi-

service environments

1. Core functionality

developed as stand-

alone components and

“microservices”, cleanly

reusable in different

configurations and

products.

2. Modularity eases

adaptation to new

hardware technologies.

5

Component Summary

Core

Argobots Argobots provides user-level thread capabilities for managing concurrency.

Mercury Mercury is a library implementing remote procedure calls (RPCs).

Margo Margo is a C library using Argobots to simplify building RPC-based services.

Thallium Thallium allows development of Mochi services using modern C++.

SSG SSG provides tools for managing groups of providers in Mochi.

Utilities

ABT-IO ABT-IO enables POSIX file access with the Mochi framework.

Bedrock Bedrock is a bootstrapping and configuration system for Mochi components.

ch_placement ch-placement is a library implementing multiple hashing algorithms.

MDCS MDCS exposes remotely accessible counters for monitoring purposes.

Shuffle Shuffle provides a scalable all-to-all data shuffling service.

Microservices

BAKE Bake enables remote storage and retrieval of named blobs of data.

POESIE Poesie embeds language interpreters in Mochi services.

REMI REMI is a microservice that handles migrating sets of files between nodes.

SDSKV SDSKV enables RPC-based access to multiple key-value backends.

SDSDKV SDSDKV provides a distributed key-value service using Mochi components.

Sonata Sonata is a Mochi service for JSON document storage based on UnQLite.

6

Agenda

2:30 – 2:40 Welcome and Introductions Rob Ross

2:40 – 2:55 Getting Started Phil Carns

2:55 – 3:10 Composition and Configuration Matthieu Dorier

3:10 – 3:25 Networking with Mercury Jerome Soumagne

3:25 – 3:30 Wrap-up Rob Ross

Getting Started with Mochi
&

Recent Updates

8

Getting Started

• Start here for documentation:

– https://mochi.readthedocs.io/en/latest/

• Additional resources, including a mailing list and slack
space, can be found on the project web page:

– https://www.mcs.anl.gov/research/projects/mochi/

• Installation “recipes” are available for several popular ECP platforms

– https://github.com/mochi-hpc-experiments/platform-configurations (spack
environment examples)

– https://github.com/mochi-hpc-experiments/mochi-tests (performance
regression script examples)

• We will be continuing to improve the first-time user experience
in upcoming deliverables

https://mochi.readthedocs.io/en/latest/
https://www.mcs.anl.gov/research/projects/mochi/
https://github.com/mochi-hpc-experiments/platform-configurations
https://github.com/mochi-hpc-experiments/platform-configurations
https://github.com/mochi-hpc-experiments/platform-configurations
https://github.com/mochi-hpc-experiments/platform-configurations
https://github.com/mochi-hpc-experiments/platform-configurations
https://github.com/mochi-hpc-experiments/platform-configurations
https://github.com/mochi-hpc-experiments/platform-configurations
https://github.com/mochi-hpc-experiments/mochi-tests
https://github.com/mochi-hpc-experiments/mochi-tests
https://github.com/mochi-hpc-experiments/mochi-tests
https://github.com/mochi-hpc-experiments/mochi-tests
https://github.com/mochi-hpc-experiments/mochi-tests
https://github.com/mochi-hpc-experiments/mochi-tests
https://github.com/mochi-hpc-experiments/mochi-tests

9

Installing Mochi with Spack

• We strongly recommend using Spack to install any Mochi components

– Straightforward to do per-user installations without administrative privilege

– Component dependencies are handled automatically

– One unified yaml file expresses all preferred build settings
(e.g., network transport, compiler, storage backend) for a given platform

– Our team maintains an external package repository that enables rapid integration of new releases

• See https://mochi.readthedocs.io/en/latest/ for details

https://mochi.readthedocs.io/en/latest/

10

Mochi source code: now on GitHub!

• All Mochi source code has been migrated to github.com
as of March 2021

– https://github.com/mochi-hpc/

– The Mochi software is actually a collection of components maintained in separate repositories

– Bug reports and contributions are welcome! Please note the CLA policy for contributions.

• Were you already using Mochi prior to the migration?
Update your spack repository to refer to the new location.

– https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/

spack repo rm mochi

git clone https://github.com/mochi-hpc/mochi-spack-packages.git

spack repo add mochi-spack-packages

https://github.com/mochi-hpc/
https://github.com/mochi-hpc/
https://github.com/mochi-hpc/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://github.com/mochi-hpc/mochi-spack-packages.git
https://github.com/mochi-hpc/mochi-spack-packages.git
https://github.com/mochi-hpc/mochi-spack-packages.git
https://github.com/mochi-hpc/mochi-spack-packages.git
https://github.com/mochi-hpc/mochi-spack-packages.git
https://github.com/mochi-hpc/mochi-spack-packages.git
https://github.com/mochi-hpc/mochi-spack-packages.git

11

Performance diagnostics and profiling

• How do you tune the performance of a Mochi service?

– Step 1: Use the best (native) network transport for your platform

– Step 2: Use Mochi diagnostic and profiling tools* to understand where
service time is spent

• Basic performance diagnostic and profiling capability built into any
Mochi service

– No need to modify or recompile application or service

– Automatically tracks Mochi RPCs

– Automatically tracks RPC dependencies

– Includes intra-node, inter-node, and inter-process calls

* Functionality developed by Srinivasan Ramesh of U. Oregon, see:

SYMBIOSYS: A Methodology for Performance Analysis of Composable HPC Data Services
Srinivasan Ramesh, Allen D. Malony, Philip Carns, Robert B. Ross, Matthieu Dorier, Jerome
Soumagne, and Shane Snyder (to appear in IPDPS 2021)

12

Enable profiling of an existing service

• Set environment variables to enable profiling

• Run your service / application

• Generate profile summary

• Render RPC dependency graph

• Look at the results!

See README.md in mochi-margo for more information

13

How many times was each RPC call path executed?

This graph shows
the top 5 most
frequently executed
RPCS.

Note chains
showing
provenance of
RPC invocations.

14

How much cumulative time was spent in each RPC?

This graph shows
the top 5 RPCs in
terms of cumulative
time.

Unusual example:
target (server) side
of this RPC
consumed more
time than clients,
indicating presence
of completion delay
after sending ack.

15

How were the RPCs distributed across servers?

For the most
frequently executed
RPC, how well was
it distributed across
available targets
(servers)?

Skewed results
here could indicate
a hotspot or load
imbalance.

16

Future work

How do we plan to improve the “getting started” and “performance profiling” experiences with Mochi?

1. Create a structured “Hello Mochi” mechanism to get started with Mochi for the first time and
confirm that it is working correctly on your system.

– Automated as much as possible

– Normalize support information for new users

2. Improve performance tuning capability

– Auto-tuning and recipes where appropriate

– More integrated capabilities to report status, statistics, configuration, and profiling

Composition and Configuration
of Mochi Services

18

Architecture of a composed Mochi service

na+sm://1234/56

Bake Provider

SDSKV Provider

Margo
instance

PMEM target

Log-structured
File target

BerkeleyDB
database

LevelDB
database Mochi Runtime

(Mercury,
Argobots, Margo,
Thallium)

Providers Resources

19

Architecture of a composed Mochi service

na+sm://1234/56

Your Provider

Margo
instance Your Abstract

Resource
Interface

Mochi Runtime
(Mercury,
Argobots, Margo,
Thallium)

• Registers RPC
handlers

• Receives RPCs
from clients

• Manages resources

Resources

Your Resource
Type A

Your Resource
Type B

Providers

20

Architecture of a composed Mochi service

na+sm://1234/56

Client

Margo
instance

Resource Handle Provider Handle

• Registers RPCs
• Creates provider

handles and/or
resource handles

• Encapsulates an
address and a
provider id

• Encapsulates an
address, a
provider id (or a
provider handle)
and a resource
identifier (name,
uuid, etc.)

21

Architecture of a composed Mochi service

na+sm://1234/56

Client

Margo
instance

Resource Handle

Provider Handle Admin

• Client: operations directed towards resources (put data, get data,
etc.)

• Admin: operations directed towards provider (manage resources)

22

Mochi microservice templates

• Margo microservices (C)

– https://github.com/mochi-hpc/margo-microservice-template

– json-c for configuration

– μnit for unit-testing

• Thallium microservices (C++)

– https://github.com/mochi-hpc/thallium-microservice-template

– nlohman_json for configuration

– CppUnit for unit-testing

• Clone, run python setup.py to rename files and classes / functions / structures

• More information: https://mochi.readthedocs.io/en/latest/templates.html

https://github.com/mochi-hpc/margo-microservice-template
https://github.com/mochi-hpc/margo-microservice-template
https://github.com/mochi-hpc/margo-microservice-template
https://github.com/mochi-hpc/margo-microservice-template
https://github.com/mochi-hpc/margo-microservice-template
https://github.com/mochi-hpc/margo-microservice-template
https://github.com/mochi-hpc/margo-microservice-template
https://github.com/mochi-hpc/thallium-microservice-template
https://github.com/mochi-hpc/thallium-microservice-template
https://github.com/mochi-hpc/thallium-microservice-template
https://github.com/mochi-hpc/thallium-microservice-template
https://github.com/mochi-hpc/thallium-microservice-template
https://github.com/mochi-hpc/thallium-microservice-template
https://github.com/mochi-hpc/thallium-microservice-template
https://mochi.readthedocs.io/en/latest/templates.html

23

Going away from hand-written daemons with Bedrock

• Key ideas

– Describe components (providers, abt-io, ssg, etc.) to deploy on a node in a JSON file

– Deploy a generic daemon that reads the JSON file

– Query the deployment configuration at any time via RPC

– Deploy new components dynamically at any time via RPC

• Advantages

– No need for a custom composition in C/C++/Python

– More reproducible configurations

– Easier to share configurations for troubleshooting

• Full tutorial: https://mochi.readthedocs.io/en/latest/bedrock.html

https://mochi.readthedocs.io/en/latest/bedrock.html

24

JSON examples

{ "margo" : {

 "mercury" : { },

 "argobots" : {

 "abt_mem_max_num_stacks" : 8,

 "abt_thread_stacksize" : 2097152,

 "version" : "1.0.0",

 "pools" : [

 { "name" : "my_progress_pool", "kind" : "fifo_wait", "access" : "mpmc" },

 { "name" : "my_rpc_pool", "kind" : "fifo_wait", "access" : "mpmc" }],

 "xstreams" : [

 { "name" : "my_progress_xstream", "cpubind" : 0, "affinity" : [0, 1],

 "scheduler" : { "type" : "basic_wait", "pools" : ["my_progress_pool"] } },

 { "name" : "my_rpc_xstream", "cpubind" : 2, "affinity" : [2, 3, 4, 5],

 "scheduler" : { "type" : "basic_wait", "pools" : ["my_rpc_pool"] } }

]

 },

 "progress_pool" : "my_progress_pool",

 "rpc_pool" : "my_rpc_pool”

}, …

Mercury config
(see documentation)

Argobots pools

Argobots xstreams

Default pools to use for
progress and for running
RPC handlers

25

JSON examples

…

 "bedrock": { "pool": "my_rpc_pool", "provider_id": 0 },

 "abt_io" : [

 { "name" : "my_abt_io", "pool" : "__primary__" }

],

 "ssg" : [

 { "name" : "mygroup", "bootstrap" : "init", "group_file" : "mygroup.ssg" }

],

…

SSG groups and ABT-IO instances

26

JSON examples

…

 "libraries" : {

 "module_a" : "examples/libexample-module-a.so",

 "module_b" : "examples/libexample-module-b.so"

 },

 "clients" : [

 { "name" : "ClientA", "type" : "module_a", "config" : {}, "dependencies" : {} }

],

 "providers": [

 { "name" : "ProviderA", "type" : "module_a", "provider_id" : 42,

 "pool" : "__primary__", "config" : {}, "dependencies" : {} },

 { "name" : "ProviderB", "type" : "module_b", "provider_id" : 33,

 "pool" : "__primary__", "config" : {},

 "dependencies" : {

 "ssg_group" : "mygroup",

 "a_provider" : "ProviderA",

 "a_local" : ["ProviderA@local"],

 "a_client" : "module_a:client” }

 }] }

Libraries to dlopen, with
definitions of microservices

Some microservice clients

Some microservice providers

Dependencies can by any
named entity (client, provider,
abt-io instance, SSG group)
as well as addresses to
providers on other processes

27

Bedrock module library (C)

static struct bedrock_module ModuleA = {

 .register_provider = ModuleA_register_provider,

 .deregister_provider = ModuleA_deregister_provider,

 .get_provider_config = ModuleA_get_provider_config,

 .init_client = ModuleA_init_client,

 .finalize_client = ModuleA_finalize_client,

 .get_client_config = ModuleA_get_client_config,

 .create_provider_handle = ModuleA_create_provider_handle,

 .destroy_provider_handle = ModuleA_destroy_provider_handle,

 .provider_dependencies = ModuleA_provider_dependencies,

 .client_dependencies = ModuleA_client_dependencies

};

BEDROCK_REGISTER_MODULE(module_a, ModuleA)

Fill out this data structure and
compile into a dynamic
library for Bedrock to load!

A C++ equivalent exists if you
prefer (see documentation)

Networking with Mercury

29

Mercury

• Base low-level RPC component used for communication between Mochi services

– Always consider higher-level components first before directly using the HG API

• No explicit concurrency / multi-threading done at that level

– However, Mercury provides thread-safety

• Two main data transfer methods

– Point-to-point RPC through eager messages

• Connection-less semantics

– Bulk data through RDMA

• No memory copy

• Potential buffer allocation / memory registration overheads (avoid doing these in hot code paths)

– (Support for collectives is considered)

30

Mercury – Status and Roadmap

• 2.0.0 version was released in November

– Support for immediate lookups through HG_Addr_lookup2()

– Improved support of libfabric and support of new tcp provider

– Improved shared-memory plugin with full connection-less endpoints support

– Improved bulk interface with more efficient handling of I/O with small segment count

– Improved efficiency of mercury proc routines

– Improved polling mechanism

– Improved cancellation of operations and error handling

– Improved error / warning and debug logging

2.0.0 2.0.1 2.1.0 3.0.0 … …

31

Mercury – Status and Roadmap

• 2.0.1 version released or about to be released

– Mostly bug fixes

– Improved error / warning and debug logging with log subsystems

• HG_LOG_LEVEL=debug/warning/error

• HG_LOG_SUBSYS=hg/na/mem/op/msg/rma

• 2.1.0 version (summer / fall timeframe)

– Add support for UCX (tcp and verbs tested)

• 3.0.0 version

– Extend addressing capabilities to address contexts (enhanced multithreading support and composability)

2.0.0 2.0.1 2.1.0 3.0.0 … …

32

Mercury – Supported Transports

tcp verbs shm psm psm2 gni

OFI ✓ ✓ ✕** ✕** ✓ ✓

SM ✕ ✕ ✓ ✕ ✕ ✕

UCX* ✓ ✓ ✕** ✕ ✕ ✕**

PSM* ✕ ✕ ✕ ✓ ✓ ✕

BMI ✓ ✕ ✕ ✕ ✕ ✕

* Not yet available in mainstream branch

** Not explicitly supported by mercury but may be supported by underlying library

33

Mercury – Known Issues and Tuning Knobs

• Specific and recurring libfabric limitations

– Progress thread (extra thread launched by OFI)

• auto progress ←→ manual progress requires busy spinning

– RxM (tcp and verbs): connection management and scalability issues

• FI_UNIVERSE_SIZE must be set to max number of peers

• Initialization options can be passed to ‘HG_Init_opt()’

– request_post_init

– request_post_incr

– auto_sm

– no_bulk_eager

– no_loopback

– (hint for eager size limit)

Control number of requests posted by server to receive / process
RPCs (addtl incoming RPCs are queued by transport layer)

Turn off if not needed to improve
performance

Turn on to use shared-memory transparently

34

Mercury – Contexts and Multi-threading

HG class

HG context

Process

HG class

HG context

Process

HG_Respond()

callback pushed

to local context

HG_Forward()

callback pushed

to local context

RPC

HG_Progress()

HG_Trigger()

HG_Progress()

HG_Trigger()

HG_Context_create()

RPC requests posted

HG class

HG context

Process

Process

HG class

HG context

HG context

Core 1

Core N

RPC to

context

Move to model that
prevents overheads
and context switches
between threads

35

Mercury – UCX Plugin

• Uses UCP API

– Transport selection/method is transparent (no need for explicit implementation support)

– Class / Context creation → ucp_worker_create()

– Send expected/unexpected → ucp_tag_send_nbx()

– Recv expected/unexpected → ucp_tag_recv_nbx()

– Put → ucp_put_nbx()

– Get → ucp_get_nbx()

– Progress → ucp_worker_progress()

• Current limitations

– Initialization config options passed through UCX_XXX environment variables

– Single UCP worker per class shared between contexts

– Blocking progress not yet implemented

Credit: David Young (The HDF Group)

Wrapping Up

37

Thanks for being here!

•We’re excited by all the interest that Mochi is garnering!

•We would like to meet one-on-one if you’re interested:

– Sign ups are at the URL below, or reach out to one of us

– https://www.signupgenius.com/go/5080b48a4ac22a2fa7-mochi

• Any questions in our last couple of minutes?

https://www.signupgenius.com/go/5080b48a4ac22a2fa7-mochi
https://www.signupgenius.com/go/5080b48a4ac22a2fa7-mochi
https://www.signupgenius.com/go/5080b48a4ac22a2fa7-mochi

